The relationship between student self-efficacy and learning engagement at Chinese vocational colleges during internship

Introduction. The global education community is currently facing a learning crisis in the instructional process, as learning outcomes frequently fail to meet expectations due to insufficient engagement in classrooms. The promotion of student engagement in learning has become a significant issue of concern within the education sphere. Self-efficacy has been identified as a predictor of learning engagement; therefore, the study seeks to establish the empirical link between self-efficacy and learning engagement in the pedagogical process.

Study participants and methods. A survey research design was utilized, involving 204 interns who were randomly selected from five vocational colleges in Wenzhou City, China. The collected data were subjected to Factor Analysis and correlation analysis for analysis purposes. Self-efficacy, emotional engagement, effort quality, psychological adjustment, and colleague interaction all had Cronbach’s alpha values of 0.902, 0.918, 0.892, 0.849, and 0.847, respectively.

Results. Emotional Engagement, Quality of Effort, Psychological Adjustment, Colleague Interaction, and Self-Efficacy had positive correlation coefficients of 0.455, 0.426, 0.376, and 0.4, respectively. These correlations were both significant at the 1% level. The regression model’s R square indicates that self-efficacy accounted for 20.7%, 18.1%, 14.1%, and 16% of the variance in each component of learning engagement: emotional involvement, quality of effort, psychological adjustment and colleague interaction respectively. Findings revealed a strong impact of self-efficacy on several facets of interns' learning engagement.

Practical significance. Self-efficacy plays a crucial role in shaping students' learning engagement, both within traditional on-campus courses and during their internships. Enhancing the self-efficacy of vocational college interns is imperative to improve their learning experiences, both inside and outside the classroom.

Keywords: vocational college, internship, self-efficacy, learning engagement, regression analysis

For Reference:
INTRODUCTION

In order to ensure that no one is left behind and to simultaneously contribute to the wellbeing of the country, SDG4 (UNESCO) emphasizes the importance of TVET. This goal is achieved by ensuring that all adolescents have access to high-quality TVET education by gradually making TVET education free, and guaranteeing that youths enrolled in or not enrolled in the formal education system acquire both the current work-based competences and the future-oriented competencies. TVET’s curriculum places great emphasis on the internship of students as a competitive project, as a realization of being important to industry.

Yao and Zhang [48] both analysed the annual gap between Chinese technical personnel from 2019 to 2035 and found that the annual gap between advanced technical skills from 2019 to 2035 was more than 7 million, with the overall gap increasing year by year. Researchers have emphasised the value of human capital from the standpoint of an enterprise’s competitive advantage, and they think that human capital is the most valuable imitative resource for the creation of competitive advantage [24; 37]. D. Holman [16] proposed that education is considered one of the most powerful driving forces for sustainable development and when we experience a transition to a goal-oriented society, education plays a key role in the process.

Higher vocational education in China has undergone more than 40 years of development, evolving from an auxiliary and supporting component of higher education to a significant form and component of higher education in China. Chinese higher vocational education should become an important part of human resources development and assume the significant responsibility of cultivating a variety of talents, according to the Opinions on Promoting the High-Quality Development of Modern Vocational Education published by the [13]. However, it is important to keep in mind that Chinese higher vocational education must accomplish its own qualitative growth in the process of talent training. Because high-quality development is both the objective prerequisite for high-quality economic and social growth as well as the natural tendency of the higher education sector’s developmental stage [45].

According to [18], student involvement in learning in college refers to the time and effort invested in the many educational activities that the university provides, and it is suggested that student engagement in learning may be used as a stand-in for quality. A high-quality education should include internships, which are a crucial component of higher vocational college students’ education. Students in vocational colleges may be able to complete fieldwork through internships, and internships may also help schools develop their students’ moral character and professional aptitude. Internship provide students with the chance to put what they learn in a typical classroom context to use in a real-world workplace and develop a practical understanding of their professional issues [2; 21]. Student internship is the essential link between education and teaching in Chinese vocational college, and the effectiveness of their management directly affects the calibre of talent development there [9].

Although the internship process is so important, the learning engagement in the internship process has not received any attention, and researchers will often focus on the students’ classroom learning. Despite the increased emphasis on learning engagement, as some researchers have noted, the majority of research has been on student participation in the learning process (on-campus courses) [29]. In addition, the college students’ personal attitude towards the internship is also very cold, which eventually leads to the lack of
engagement in the internship [48]. As a result, it got us to thinking about what influences students' learning engagement during internships. For a long time, many studies have found that self-efficacy can serve as a predictor of learning participation [30]. Student with high self-efficacy showed higher learning effort and higher active engagement, and also showed greater perseverance in adversity [49]. For these reasons, this study suggests that by analyzing the relationship between vocational college student self-efficacy and learning engagement during internship, so as to provide reference opinions for improving vocational college student learning engagement in internship and promoting the quality of internship education.

LITERATURE REVIEW

Self-efficacy is a key idea in Bandura's social learning theory and is described as one's level of assurance in their capacity to apply current abilities to a specific activity relevant to their line of work [3; 4]. Individual behaviour is influenced by self-efficacy, and self-efficacy theory explains efficacy [32]. According to [19], people would typically opt to engage in activities in which they feel confident rather than refrain from engaging in activities in which they feel insecure and could struggle. As mentioned by [15] as well, people are aware from the self-validation theory that their level of confidence in their ability to complete a task affects how they act. Thereby, it can be asserted that people have strong self-efficacy, stronger confidence in some activities, and more enthusiasm to engage in activities, such as student learning engagement activities. Previous studies that measure the level of individual self-efficacy have emerged, such as [4], whose measurement of self-efficacy includes three dimensions: degree, strength, and universality [17]. Meanwhile, Schwarzer et al. proposed the self-efficacy scale (General Self-Efficacy Scale, GSES) in 1981 with an initial version of 20 items, which was later revised to a single dimension of 10 items in 1997 [42].

Academic achievement is significantly predicted by learning engagement. In the past 20 years, the involvement of college students has been a hot topic in the field of higher education research worldwide. According to research, college students who are more engaged in their studies do better overall (Fredricks, et.al., [12]; Mat Isa et.al., [26]; Zhao, et.al., [50]), and their proportion of negative feelings and actions also declined [23; 36]. The significance of learning engagement has been covered extensively in the past, with several investigations highlighting the link between student involvement and increased performance, exam access, and graduation rates (Fredricks, et.al., [12]; Wang, et.al., [43]; Wang, et.al., [44]; Rohde, et.al., [33]). Similar to this, there have been numerous investigations into the dimensions of learning engagement level measurement in earlier studies. For instance, [39] created a scale for measuring learning engagement among college students, believing that learning engagement is a long-lasting, positive psychological state connected to study, research, and employment with three dimensions: vigour, dedication, and absorption.

According to Fredricks [12], the three components of behavioral engagement, cognitive engagement, and emotional engagement make up the meta-structure of learning engagement. The behavioral engagement component relates to the learners' external behaviour performance, which includes task completion, involvement in educational activities, learning concentration, learning time, effort, and other elements. The cognitive engagement component refers to the cognitive actions that learners take to accomplish predetermined learning objectives [12]. These cognitive actions include self-management,
meta-cognitive activities, strategic actions, and investment in learning and mastery. When students are highly cognitively invested, they frequently actively apply learning techniques, create adequate learning plans for themselves, regularly alter the learning process, fully comprehend and master what they have learned, and display positive learning behaviour. The emotional input dimension describes the intensity of psychological feelings experienced by learners during learning, including their sense of belonging [12], their interest in the learning task [13], and their emotional experiences [1], such as "I will feel happy and happy while learning", and so on. It is evident that when learners' emotional engagement levels are strong, they will express interest in the activities or materials they are learning as well as feel joyous during the learning process. On the other hand, when emotional involvement is poor, students are more likely to resist learning and experience unpleasant emotions like boredom and worry while they are studying.

The three-dimensional classification of engagement into behavioral, emotional, and cognitive was introduced by [12] and is now widely recognised [25]. Researchers [48] conducted an empirical study on the dimensions of learning engagement in the internship process of Chinese college students. They accepted the learning engagement meta-structure proposed by Fredricks et al. as well as Kahu's particular categorization of engagement aspects into cognitive, emotional, and behavioral. Based on the characteristics of college students' internships, five dimensions include enthusiasm, sense of belonging, quality of effort, colleague interaction, and psychological adjustment. Finally, exploratory factor analysis revealed four dimensions named emotional engagement, quality of effort, colleague interaction, and psychological adjustment [48].

The link between self-efficacy and learning engagement has been the subject of several studies in the past. As a result, we have additional evidence that suggests a connection between higher vocational college interns' learning engagement and their sense of self-efficacy in the internship experience. According to [8], high self-efficacy is regarded as important for enjoyment and excitement, whereas low self-efficacy causes negative emotions to be triggered regarding learning activities, which may have a detrimental impact on academic engagement. It is clear that self-efficacy may be related to learning engagement, and recent empirical research has investigated this connection. For instance, [41] studied middle school students' learning engagement and found that it was strongly and favourably associated with self-efficacy. This study validated the tight relationship between the two through empirical research. According to [31], distance learners can become more engaged in the learning process when they have higher levels of self-efficacy. Through empirical study, [46] discovered a favourable relationship between undergraduate nursing students' learning engagement and their self-efficacy for learning.

Additionally, Ch. Meiqi [10] revealed through an empirical study that undergraduate nursing students need to enhance their levels of self-efficacy and learning engagement and that self-efficacy is positively correlated with learning engagement. Therefore, raising the self-efficacy of nursing students can successfully raise the degree of learning engagement. Looking back at the study that examined the relationship between self-efficacy and learning engagement, it offered theoretical support for the proposition that there is a connection between self-efficacy among students at vocational colleges and learning engagement during an internship.

The themes and objectives of this study, however, were not covered by prior studies on the link between self-efficacy and learning engagement, and the two variable measuring scale instruments used in earlier studies are not always appropriate for interns in vocational
institutions. Additionally, the four components of an internship's involvement; emotional engagement, quality of effort, psychological adjustment and colleague interaction were analyzed by [48]. And in accordance with a single dimension of 10 questions that was amended in 1997 based on Schwarzer et al.'s General Self-Efficacy Scale (GSES) from 1981 [42]. In order to examine the link between self-efficacy and learning engagement among vocational college students during internships, this study develops a conceptual model and suggests four hypotheses. Based on an extensive literature review, the proposed study model is shown in Figure 1.

![Figure 1 A proposed model of Self-efficacy and learning engagement](image)

Based on the above model in Figure 1 we proposed the following research hypotheses:

H1. There is a positive and significant relationship between Self-Efficacy and Emotional Engagement during the internship of vocational college students;

H2. There is a positive and significant relationship between Self-Efficacy and Quality of Effort during the internship of vocational college students;

H3. There is a positive and significant relationship between Self-Efficacy and Psychological Adjustment during the internship of vocational college students;

H4. There is a positive and significant relationship between Self-Efficacy and Colleague Interaction during the internship of vocational college students.

METHODS

1. Questionnaire design

The 10-item single-dimensional general self-efficacy scale was adapted from [48] questionnaire of college students' internship engagement scale were both used in this study of trainee students from five higher vocational colleges in Wenzhou, China. The questionnaire consists of 31 questions, with the general self-efficacy of trainee students having 10 of them. Each item must be graded on a 4-point Likert scale (1 being extremely inconsistent, 2 being inconsistent, 3 being consistent, and 4 being inconsistently consistent); the emotional engagement dimension has 6 questions, the effort quality dimension has 7, the colleagues' interaction dimension has 5, and the psychological adjustment dimension has 3 questions.

2. Data Collection and Analysis Procedure

After five specialists and ten internships, students pretested the reasonableness of the questionnaire items, 240 interns from five vocational colleges in Wenzhou, China, were chosen at random. The questionnaires were created using online platforms, and the data
was collected using online forms. In total, 219 questionnaires were collected, and invalid questionnaires were removed through screening. A total of 204 genuine survey responses were collected. The effectiveness of the questionnaires was nearly 93.15%. The data in this study was also analyzed using SPSS 26.0 software. Examine the questionnaire’s validity and reliability first. Second, investigate the relationship between self-efficacy and coworker interpersonal interactions, emotional engagement, effort quality, and psychological adjustment. Finally, four hypotheses were investigated using regression analysis.

3. Reliability Analysis

The five components of self-efficacy, emotional engagement, quality of effort, psychological adjustment, and colleague interaction were used to develop a number of challenges that were centered on the research premise. The relevant questionnaire is created based on the previous scale questionnaire and the internship situations of students in higher vocational colleges in order to confirm the accuracy and applicability of the measurement scale. Self-efficacy was evaluated using a four-point Likert scale in accordance with the study questions, while emotional engagement, effort quality, psychological adjustment, and collegial interaction were evaluated using a five-point Likert scale. The internal consistency coefficient, or Cronbach's alpha coefficient, was used to assess the scale's reliability. The Cronbach’s alpha values for self-efficacy, emotional engagement, quality of effort, psychological adjustment, and colleague interaction are 0.902, 0.918, 0.892, 0.849, and 0.847, respectively. All were greater than 0.7, and the Cronbach's alpha in each dimension is less than the value not deleted, indicating good internal consistency; that is, the scale has high reliability and is appropriate for the following analysis.

4. Validity analysis

Since the Self-Efficacy in this study is a four-point Likert scale, while Emotional Engagement, Quality of Effort, Psychological Adjustment, and Colleague Interaction are five-point Likert scales, scales that are not at uniform levels cannot be put together for exploratory factor analysis, the exploratory factor analysis is to put the dimensions of Emotional Engagement, Quality of Effort, Psychological Adjustment, and Colleague Interaction together, and since the Self-Efficacy has only one dimension, there is no need for validity analysis. For further analysis of the validity of the Emotional Engagement, Quality of Effort, Psychological Adjustment, and Colleague Interaction scales, <Table> 1 shows that the test KMO value was 0.893, greater than 0.7, and the p-value of the sphericity test for Bartlett of less than 0.01 was significant at the 1% level, indicating suitability for factor analysis.

Table 1

<table>
<thead>
<tr>
<th>KMO and Bartlett’s Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiser-Meyer-Olkin Measure of Sampling Adequacy</td>
<td>.893</td>
</tr>
<tr>
<td>Bartlett’s Test of Sphericity</td>
<td></td>
</tr>
<tr>
<td>Approx. Chi-Square</td>
<td>2311.769</td>
</tr>
<tr>
<td>df</td>
<td>210</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 2 shows the factor rotation coefficients for each dimension. After principal component analysis, it was found that four feature roots were greater than one feature root, and the cumulative explained variance reached 66.995%. Since the percentage of
variance explained for the first factor is 20.460%, less than 40%, there is no serious common method bias. According to the design of the question items, the scale is divided into four dimensions: emotional engagement, quality of effort, psychological adjustment, and colleague interaction, and there are four eigenvalues greater than 1. This further reflects the rationality of the questionnaire design. Since the larger the rotating load coefficient of the factor, the larger the dimensions of the item, 0.6 is taken as the limit; that is, the item greater than the load coefficient of 0.6 is the final measurement basis. As can be seen from Table 3, the coefficients of the four factors show that the load coefficient of each item factor here corresponds to the respective item, indicating the rationality of the questionnaire structure and distinguishing validity.

Table 2

<table>
<thead>
<tr>
<th>Rotated Component Matrixa</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Emotional Engagement1</td>
<td>.796</td>
</tr>
<tr>
<td>Emotional Engagement2</td>
<td>.832</td>
</tr>
<tr>
<td>Emotional Engagement3</td>
<td>.835</td>
</tr>
<tr>
<td>Emotional Engagement4</td>
<td>.807</td>
</tr>
<tr>
<td>Emotional Engagement5</td>
<td>.829</td>
</tr>
<tr>
<td>Emotional Engagement6</td>
<td>.803</td>
</tr>
<tr>
<td>Quality of Effort1</td>
<td>.793</td>
</tr>
<tr>
<td>Quality of Effort2</td>
<td>.751</td>
</tr>
<tr>
<td>Quality of Effort3</td>
<td>.698</td>
</tr>
<tr>
<td>Quality of Effort4</td>
<td>.777</td>
</tr>
<tr>
<td>Quality of Effort5</td>
<td>.735</td>
</tr>
<tr>
<td>Quality of Effort6</td>
<td>.767</td>
</tr>
<tr>
<td>Quality of Effort7</td>
<td>.762</td>
</tr>
<tr>
<td>Psychological Adjustment1</td>
<td>.737</td>
</tr>
<tr>
<td>Psychological Adjustment2</td>
<td>.752</td>
</tr>
<tr>
<td>Psychological Adjustment3</td>
<td>.763</td>
</tr>
<tr>
<td>Psychological Adjustment4</td>
<td>.801</td>
</tr>
<tr>
<td>Psychological Adjustment5</td>
<td>.773</td>
</tr>
<tr>
<td>Colleague Interaction1</td>
<td>.831</td>
</tr>
<tr>
<td>Colleague Interaction2</td>
<td>.858</td>
</tr>
<tr>
<td>Colleague Interaction3</td>
<td>.838</td>
</tr>
<tr>
<td>Rotation Sums of Squared Loadings for Initial Eigenvalues</td>
<td>4.297</td>
</tr>
<tr>
<td>Rotation Sums of Squared Loadings for % of Variance</td>
<td>20.460</td>
</tr>
</tbody>
</table>

RESULTS

1. **Correlation analysis**

Table 3 shows the correlation analysis between the various variables, according to the table, the correlation coefficients of Emotional Engagement, Quality of Effort, Psychological Adjustment, Colleague Interaction and Self-efficacy were 0.455, 0.426, 0.376, and 0.4,
respectively, both were significant at the level of 1%, it shows that Emotional Engagement, Quality of Effort, Psychological Adjustment, and Colleague Interaction were all positively and significant correlated with Self-Efficacy.

<table>
<thead>
<tr>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Efficacy</td>
</tr>
<tr>
<td>Self-Efficacy</td>
</tr>
<tr>
<td>Emotional Engagement</td>
</tr>
<tr>
<td>Quality of Effort</td>
</tr>
<tr>
<td>Psychological Adjustment</td>
</tr>
<tr>
<td>Colleague Interaction</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed). r value= Pearson correlation

2. Regression analysis

Self-Efficacy and Emotional Engagement were the independent and dependent variables in the regression study. The R square of the regression model was 0.207, which means that Self-Efficacy explained changes in emotional involvement by 20.7%, according to the regression model data presented in Table 4 below. The model accepts hypothesis 1 and the coefficients of the variables are legitimate, according to the F value of 52.747, which is significant at the 1% level. The correlation between self-efficacy and emotional engagement was 0.774, significant at the 1% level, meaning that for every unit increase in self-efficacy, emotional engagement rises by 0.774 units.

<table>
<thead>
<tr>
<th>Coefficientsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable: Emotional Engagement</td>
</tr>
<tr>
<td>(Constant)</td>
</tr>
<tr>
<td>Self-Efficacy</td>
</tr>
</tbody>
</table>

**. is significant at the 0.01 level (2-tailed).

Self-Efficacy and Quality of Effort were the independent and dependent variables in the regression analysis. The R square of the regression model was 0.181, suggesting that Self-Efficacy explained changes in Quality of Effort by 18.1%. The regression model’s findings are presented in Table 5 below. The model accepts hypothesis 2 and the coefficients of the variables are legitimate, as shown by the F value of 44.67, which is significant at the 1% level. The Quality of Effort rises by 0.661 units for every unit that Self-Efficacy increases by, according to the coefficient of self-efficacy, which was 0.661 and significant at the 1% level.
Self-Efficacy and Psychological Adjustment were the independent and dependent variables in the regression analysis. The regression model's findings are presented in the following Table 6, and its R square value of 0.141 indicates that Self-Efficacy accounted for 14.1% of changes in Psychological Adjustment. The model accepts hypothesis 3, which means that the coefficients of the variables are valid collectively, according to the F value of 33.29, which is significant at the 1% level. When the self-efficacy coefficient reached 0.608, it was significant at the 1% level, meaning that for every unit rise in self-efficacy, there was an equal improvement in psychological adjustment.

Table 6

<table>
<thead>
<tr>
<th>Dependent Variable: Emotional Engagement</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>F</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>1.929</td>
<td>.329</td>
<td>5.867</td>
<td>.000</td>
<td>33.29***</td>
<td>0.141</td>
</tr>
<tr>
<td>Self-Efficacy</td>
<td>.608</td>
<td>.105</td>
<td>.376</td>
<td>.000</td>
<td>5.770</td>
<td></td>
</tr>
</tbody>
</table>

. is significant at the 0.01 level (2-tailed).

Self-Efficacy and Colleague Interaction were the independent and dependent variables in the regression study. The regression model's findings are presented in the following Table 7, which shows that the R square was 0.16, meaning that Self-Efficacy accounted for 16% of the changes in Colleague Interaction. The model accepts hypothesis 4, which means that the coefficients of the variables are valid when considered collectively, according to the F value of 38.506, which is significant at the 1% level. When the self-efficacy coefficient was 0.792, it was significant at the 1% level, meaning that for every unit rise in self-efficacy, there was an equivalent increase in collegial interaction.

Table 7

<table>
<thead>
<tr>
<th>Dependent Variable: Colleague Interaction</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>F</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>1.170</td>
<td>.399</td>
<td>2.936</td>
<td>.004</td>
<td>38.506***</td>
<td>0.16</td>
</tr>
<tr>
<td>Self-Efficacy</td>
<td>.792</td>
<td>.128</td>
<td>.400</td>
<td>.000</td>
<td>6.205</td>
<td></td>
</tr>
</tbody>
</table>

. is significant at the 0.01 level (2-tailed).
To sum up, the four hypotheses of this study were tested by regression analysis and obtained the final results, and the results showed that all four hypotheses were supported, as shown in Table 8.

Table 8

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Relationships</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Self-Efficacy → Emotional Engagement</td>
<td>Supported</td>
</tr>
<tr>
<td>H2</td>
<td>Self-Efficacy → Quality of Effort</td>
<td>Supported</td>
</tr>
<tr>
<td>H3</td>
<td>Self-Efficacy → Psychological Adjustment</td>
<td>Supported</td>
</tr>
<tr>
<td>H4</td>
<td>Self-Efficacy → Colleague Interaction</td>
<td>Supported</td>
</tr>
</tbody>
</table>

DISCUSSION

According to the study, one's level of self-efficacy during a student internship at a Chinese vocational college can predict their intern learning engagement in four areas—emotional engagement, quality of effort, psychological adjustment, and colleague interaction. Based on this, it is understood that increasing self-efficacy contributes to interns' increased learning engagement in the internship experience. We have seen a link between self-efficacy and these four elements via prior studies on various themes. G. Kanaparan et al. [22] discovered that students' self-efficacy had an impact on emotional involvement in a beginning programming curriculum. Self-efficacy has an impact on emotional involvement, according to [32] research on students' classroom engagement. We have always thought that students who have a strong sense of their own abilities will work harder at their academics. For instance, researchers evaluated the relationships between self-efficacy, accomplishment, and effort in a sample of middle school children and discovered that student performance and self-efficacy were related to later classroom efforts [28].

Our results mostly support the notion that student self-efficacy had an impact on the level of effort. Fredricks, et.al., [20] thought that teaching students how to boost their self-efficacy and their conviction that they have the power to control their performance might encourage focus and effort. This tells us that students with greater levels of self-efficacy and self-confidence were also more likely to think of competency as being changeable and subsequently advocate for the quality of effort put forth during the internship. As a result, interns with high levels of self-efficacy are more invested in the calibre of their work. The perceived degree of self-efficacy has a significant impact on individual changes in certain sectors through four processes, including cognition, emotion, motivation, and choice, in accordance with [6] social cognition theory. According to a study by Harrison et al. from 1996, highly efficient people acclimatise better overall and have better intercultural relationships. A high degree of academic self-efficacy has also been linked in certain research studies to fewer psycho-acculturation issues and greater mental health [34].

Additionally, research in Malaysia that looked at the association between general self-efficacy, social support, and psychological adaptation in a sample of 189 foreign students found that one aspect of self-efficacy and social support was linked to psychological adaptation [47]. All of these indicate, without a doubt, that an individual's capacity to cognitively adapt to a new situation increases with their level of self-efficacy. Interns moving from campus to
a new internship location must adjust to the new setting, face several challenges, and deal with considerable pressure. As a result, strong self-efficacy interns will considerably aid in their own psychological adjustment and engage in internships more effectively. Interaction between interns and coworkers actually constitutes social engagement.

In academic mentoring, it alludes to interpersonal communication between students [37; 38]. Students may be better equipped to handle problems they encounter and, as a result, be more interested in their learning if they come to the classroom with strong internal resources (such as self-efficacy) [27]. Our interns require the intangible internal resources of self-efficacy to support their learning engagement since they are in a new learning environment at their internship location and are dealing with similar problems as they would in a campus classroom. Of course, students may exhibit low emotional and social involvement if they lack self-efficacy since they are less able to adjust to their environments [27]. We have no doubt that the two have a good and major impact link, which was also validated in this study.

CONCLUSION

According to the aforementioned analysis, it can be deduced that the findings of this empirical study concur with those of earlier research in related fields, indicating that self-efficacy has a favorable and significant impact on all elements of interns' learning engagement in internships. Promoting learners' self-efficacy will make learners perceive themselves as a stakeholder in their own learning situation. This will encourage the learner to take ownership of their learning situation and thus promote proper learning engagement in the classroom and out-of-classroom experiences.

SUGGESTION

We thus provide some recommendations in an effort to serve as a resource for parents and instructors at vocational institutions. Practically speaking, instructors at technical institutions should work to encourage and develop students' self-efficacy because it is a major factor in their willingness to participate in internships as well as their success in on-campus courses. Of course, family support is essential to the development of self-efficacy. Self-efficacy is influenced by families in a variety of ways, including through financial resources [7] and, of course, parental support, which encourages children to rise to obstacles [40]. We believe that there may be social network capital as well as material wealth in the context of family capital. Families can adequately provide interns with some financial security and social capital to help them navigate the internship process and increase their confidence and self-efficacy. However, the encouragement of family members, both verbal and spiritual, is more crucial to the development of interns' self-efficacy.

ACKNOWLEDGMENTS

The authors wish to thank the UCSI University, Malaysia for supporting this research.
REFERENCES

Information about the author

Liang Fu
(Kuala Lumpur, Malaysia)
Phd Candidate in Education
Department of Education,
Faculty of Social Sciences and Liberal Arts
University College Sedaya International (UCSI)

Associated Professor
Zhejiang Dongfang Polytechnic (China)
ORCID ID: 0009-0008-9973-4026
E-mail: 1002164003@ucsiuniversity.edu.my

Adenan Ayob
(Kuala Lumpur, Malaysia)
PhD
University College Sedaya International (UCSI), Malaysia
E-mail: adenansamsung@gmail.com
ORCID ID: 0000-0001-6357-2901

Xu Wenxin
(Almaty, Kazakhstan)
Abai Kazakh National Pedagogical University,
E-mail: xwenzhen0124@163.com
ORCID ID: 0009-0007-5616-0926

Nurudeen Babatunde Bamiro
(Lagos State, Nigeria)
Lagos State University, Ojo,
E-mail: nurudeen.bamiro@lasu.edu.ng
ORCID ID: 0000-0001-8298-8275